
Audio sleep stage binary classification based on Traditional and Deep 
features. Comparison. 
 
1. Intro 
To effectively classify sleep, numerous signals and their characteristics can be analyzed. One 
way to do it is by recording sounds. Various basic research revealed that the dynamics of 
respiration [1], [2] relate to sleep stages. Nocturnal sounds, which can be easily recorded 
throughout the night, contain rich information about sleep. These sounds provide insights 
into respiratory patterns, sleep-activity patterns, and variable breathing sounds 
corresponding to changes in muscle tone in the upper airway. Developing such model could 
help individuals understand and measure the overall level of their sleep quality, and detect 
sleep disruptions. 
 
This project explores binary sleep stage classification—awake versus asleep—based on two 
primary feature extraction approaches: traditional manual extraction and deep learning with 
Convolutional Neural Networks (CNNs). By comparing these methods, the aim is to evaluate 
their effectiveness and potential applications in non-invasive sleep monitoring solutions. 
 

2. Dataset 
PSG-Audio [3] – The dataset contains hospital ambient sounds of 212 sleep apnea patients 
recorded with a microphone placed approximately 1m above the patient’s bed. Sounds are 
sampled at 48 KHz as 24-bit .wav files. Additional non-sleeping sounds are collected, such as 
various domestic sounds: clock ticking, silence/background noise recordings, street sound 
ambience, quiet rain, thunderstorm sounds, people talking and background television 
sounds. 
The dataset is manually labelled based on respiratory patterns [Figure 2]. Given the dataset's 
bias toward sleep apnea patients, preprocessing steps were undertaken to ensure it could 
generalize to a broader population. 
 

3. Preprocessing and annotation 
The first preprocessing step is loading the sound file and dividing it into 30 second 
fragments. A 200Hz High Pass filter is applied to reduce some of the hum. A spectral gate 
noise reduction algorithm is applied to minimize background noise. The next step is turning 
each fragment into a mel spectrogram. A spectrogram is a representation of the spectrum of 
frequencies of a signal as it varies with time. A mel spectrogram is a spectrogram where 
frequencies are converted to the mel scale, which better fits human hearing. They also 
emphasize the breathing pattern which is more stable and independent from overall sound 
amplitude. The frequency domain of each mel spectrogram is set at 20 frequency bins, while 
the time steps are 1407. The mel spectrograms are randomly pitch shifted in the range (-0.2, 
0.2) for data augmentation, simulating different types of respiratory events.  
 



 
Figure 1. Preprocessing procedure [4] 

Annotation criteria: For a supervised learning approach, we need sleep classifications. As we 
don’t have official sleep labels in the dataset the solution is manual annotation. The labels 
will be 0 (Awake) and 1 (Asleep). 
For a sleep activity to occur the following criteria is needed: 

a) A constant periodic breathing pattern 
b) The breathing pattern must last for more than 50% of the fragment (at the start 

and/or at the end of the fragment 
c) If the breathing is nonexistent or it lasts for less than 50% of the fragment, it’s 

classified as 0 (Awake) 

 
          a)       b)            c) 
Figure 2. Normal sleep activity 

 
What’s known is that people with sleep apnea pause for over 10 seconds while they 
breathe, take shallow breaths, gasp, or choke. Using that information, fragments of 
unhealthy breathing are easily found [Figure 3.] and most of them are discarded to avoid 
training bias. 

 
Figure 3. Sleep apnea fragments. That’s expressed when the fragment starts with silence and the breathing 

pattern is in the middle, followed by silence. Some irregularity in the breathing might be found. 

 
We are left with a total of 55000 fragments of mel spectrograms along with their 
classifications. To save space, the fragments are saved as NumPy array files (.npy). 
31140 of them were classified as awake and 23860 as asleep. 

4. Methods 
To classify the sleep stages, two approaches were implemented: a traditional manual feature 
extraction method with a Support Vector Machine (SVM) classifier and a deep learning 
method using a Convolutional Neural Network (CNN). 
 
Manual feature extraction 
The fragment is converted to an envelope curve.  A peak detection algorithm is applied 
where the threshold for peak detection is set dynamically as the mean plus one standard 



deviation of the envelope. The autocorrelation of the filtered envelope is computed to 
analyze periodicity. (Figure 4.) Autocorrelation is essentially the correlation between the 
signal and its time-lagged version. 
 

 
Figure 4. Raw envelope -> Autocorrelation. The red dots are the peaks. 
 

A total of 10 features were extracted. These features include statistics of detected peaks, 
time intervals between peaks, and autocorrelation analysis. [5], [6] 
The initial extracted features were 14 but 4 were removed due to a significant correlation 
between them caused by their similar calculation methods. (Figure 5.) 
 

Feature Description 
Var coefficient Coefficient of variation of envelope. Standard deviation divided by the mean. 

Skewness The asymmetry of the distribution of the amplitude envelope 

Crossings Number of threshold crosses 
Breath peaks Number of signal peaks 

Sum of peaks Sum of all peak amplitudes 

Range of peaks Difference between the minimum and maximum peak 
Avg interval Average time interval between peaks [5] 

Stdev interval Standard deviation of time intervals [5] 

Cycle period Average respiratory cycle duration (Autocorrelation first peak timestep) [6] 

Cycle intensity First peak amplitude of autocorrelation. A measure of strength of the periodic 
pattern. [6] 

Table 1. Final selected features for classification 

 

 
Figure 5. Correlation Heatmap of extracted features before and after filtering. The same accuracy is achieved 
with both feature sets. 

 
 



A Z-Score normalization is applied after extraction to minimize outlier influence on training.  
In Z-Score the formula “(x – μ) / σ” is used, where x is the original value, μ is the mean of 
feature data and σ is the standard deviation of feature data. 
The manual features are classified using a Support Vector Machine classifier. SVMs can 
handle high-dimensional data (10 features) and are particularly good at solving binary 
classification problems. Here, the scikit-learn SVM package is employed to train a binary 
classifier with radial basis function (RBF) kernel to map the features into non-linear space. 
 
Convolutional Neural Network extraction 
For CNN extraction, Google’s Xception [7] architecture is used due to its high prediction rate 
for similar tasks [8]. The overall architecture of Xception network contains three main flows, 
i.e., entry, middle, and exit flows. The middle flow is sometimes referred to as the core 
structure part, and it comprises a 9-layer structure that repeats 8 times. Within the 9-layer 
structure, there are 3 layers each of Relu, separable Conv2D, and batch normalization. To 
improve the architecture performance, the core structure is changed to repeat 3 times as 
shown in A. Mehmood’s work [9]. That would significantly simplify the model without 
affecting accuracy. (Figure 6.) 

 
Figure 6. Proposed structure of Xception network used within each stream of CNN. [7] [9] 

 
The model inputs a 20x1407 mel spectrogram fragment and outputs 2048 high level features 
that are fed through a fully connected layer with a Sigmoid activation function. (Figure 7.) 

 
Figure 7. Visualization of the feature extraction and classification process 

 

The model is trained using the Stochastic Gradient Descent (SGD) optimizer with an initial 
learning rate of 0.01. Performance is monitored using cross-entropy loss and macro F1-
score. The train/validation/test split is 80/10/10. 
 



5. Results 
Before analysing the results, let’s visualize an example of a whole night’s sleep. A hypnogram 
plot was generated using a 7.2 hour personal audio recording, consisting of 867 sequentially 
predicted fragments. The plot illustrates the algorithm's confidence levels for each 
prediction, where a value of 0 indicates 100% confidence that the fragment corresponds to 
'Awake' sounds, and a value of 1 indicates 100% confidence that the fragment corresponds 
to 'Asleep' sounds. Gaussian filtering was applied to smoothen the data.  
 

 
 
Figure 8. My sleep recording, predicted with the Xception CNN model. The graph essentially 
represents periodic breathing activity during the night. 
 
Various sleep quality indicators could be calculated using this data, such as: 
 

Sleep Efficiency Ratio of time spent asleep (above 0.5) to total time in bed. 

Sleep Onset 
Latency 
 

Time it takes to fall asleep after getting into bed. 

Total Sleep Time 
(TST) 

Total duration spent asleep (above 0.5) 

Wake After Sleep 
Onset (WASO) 

The total number of minutes that a person is awake after having initially fallen asleep 

Table 2. Potential sleep quality indicators that could be calculated with models’ output 

 
Performance evaluation: 
 
To evaluate the effectiveness of each classification approach, several performance metrics 
were analysed: confusion matrices, ROC AUC, accuracy and prediction time.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Confusion Matrix of a) Manual Classifier; b) CNN Classifier 

 

a) b) 



 
 
 
Figure 10. Receiver Operating Characteristic of a) Manual Classifier; b) CNN Classifier 

 
 

 Accuracy 
(%) 

Prediction 
time (ms) 

SVM (rbf kernel) 89 0.43 

CNN (Xception) 
 

93 61 

Table 3. Performance measures of both algorithms 

 
The SVM model demonstrates good performance with high accuracy and high ROC AUC 
(0.96). Its fast prediction time suggests it is well-suited for real-time or resource-limited 
applications. However, it shows slightly higher misclassification rates than the Xception 
approach. 
The Xception model achieves even higher accuracy than the SVM, along with an improved 
ROC AUC (0.98), indicating robust classification ability and lower misclassification rates. 
However, with a prediction time of 61 ms per fragment, this model may be more suitable for 
batch processing rather than real-time applications due to the higher computational 
demand. 
 
Assuming that a periodic breathing pattern correlates to sleep activity, recording nocturnal 
sounds and using classification models is a valid approach to measure an individual’s sleep 
quality. This comparison highlights the trade-off between accuracy and computational 
efficiency. Even though Xception model provides superior classification performance, the 
SVM model remains the most practical option for applications where rapid inference is 
critical, offering faster prediction time while classification accuracy is still reasonably high. 
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